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High-Order Cycles in the Logistic Map 
or Centers of Cardioids in the Mandelbrot Set 

John Stephenson 1 

Received July 14, 1989 

Asymptotic expressions for the positions of the centres (along the real axis) of 
high-order cycle cardioids closest to the limit point - 2  in the Mandelbrot set 
are obtained by a combination of numerical and analytical methods. 
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1. I N T R O D U C T I O N  

In two important review articles Domb (1) has provided a survey of series 
expansion methods in critical phenomena, and has shown how the 
asymptotic behavior of the (often integer) coefficients comprising a series 
could yield information about the location of a critical point and the values 
of the exponents and amplitudes associated with continuous (second- and 
higher-order) transitions. When the coefficients varied smoothly, examina- 
tion of the ratios of coefficients (the "ratio method") was especially easy to 
use, and enabled Domb and Sykes (2) to make some of the first precise 
estimates of the exponents of the susceptibility of the three-dimensional 
Ising model. 

In this paper I examine a problem which arose while studying the 
Mandelbrot set, (3~ which contains a sequence of cardioids along the real 
axis. The positions of the centres of the "principal" cardioids form an inter- 
esting monotonic sequence which can be analyzed by the ratio method. 
These cardioids occur in the "periodic windows" of the (real) logistic map. 
By using the ratio method, one can obtain an expression for the asymptotic 
positions of the centres of the cardioids, which can be confirmed (partly 
analytically and partly numerically) from Feigenbaum's form of the logistic 
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map. Various exponents and amplitudes are estimated. Finally, an exact 
solution of the principal cardioid problem is presented. 

A particularly fine introduction to the Mandelbrot  set and many 
related aspects of the logistic map has been given by Peitgen and Richter (4) 
in a book where references to many original papers will be found. I assume 
the reader is familiar with the Mandelbrot  set and the associated logistic 
map through this work, or some other of the many excellent texts now 
available. The section headings indicate the layout of this paper. 

2. PRINCIPAL C A R D I O I D S  IN THE M A N D E L B R O T  SET 

The quadratic iterative map 

z n + l = R c ( z n ) = z 2 + c ,  n - 0 ,  1,2 ..... c complex (1) 

yields the Mandelbrot  set as the set of complex c for which iterates starting 
at the origin (Zo = 0) remain bounded. After n iterations one has (dropping 
the subscript c) 

zn = R ( z  n_  l ) = R (  R (  R (  . . . R(zo)))) - R " ( z o )  (2) 

For real values of the parameter  c, iterative models of the form (1) exhibit 
bifurcation leading to the onset of chaos. 

The quadratic map is equivalent to the logistic map, which (for real 
variables) May ~5) and Feigenbaurn ~6) have written in the form 

x , , + l = a x n ( 1 - x , ) ,  area l  (3) 

The algebraic relation between these forms is 

(a  - 1)2 = 1 - 4c, zn = a ( � 8 9  x . )  (4) 

Those parts of the Mandelbrot  set originating in cycles of finite order n, so 

Zo = z .  = R"(Zo) ,  (5)  

form smooth figures, such as cardioids and bubbles, n = 1 gives the main 
cardioid, n = 2 gives a circle attached to the main cardioid, and the cycles 
n = 3 and 4 each give rise to a cardioid on the real axis. For n = 5 there are 
three cardioids on the real axis, and so on. Each cardioid on the real axis 
locates a periodic window where a new cycle of order n commences. To the 
left of each cardioid a sequence of bubbles corresponding to (real axis) 
bifurcations occurs, as described by. Feigenbaum. (6) The higher-order 
cardioids all lie between the Myrberg point -1.4011552 .... where the bifur- 
cation sequence associated with the main cardioid terminates, and the 
"spike" of the Mandelbrot  set at the limit point - 2 .  For  each cycle of 
order n the cardioid closest to --2 will be called the "principal cardioid." 
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It is straightforward to calculate all the cardioids exactly (algebraically) for 
low orders of cycles (e.g., n = 1, 3, 4, 5). One observes that as n increases, 
the principal cardioids are all similar in shape and shrink in size while 
approaching the limit point - 2 .  An eyeball estimate suggests that the 
distance of each principal cardioid from - 2  decreases by a scaling factor 
of 4 at each stage. 

As a first step toward determining the scaling factor and the nature of 
the approach of the principal cardioids to the limit point, we study the 
positions of the "centres" of the cardioids, which are located (4) by the values 
of c for which the origin is a member of the cycle in question. The required 
values of c at the centres can be located as the zeros of polynomials 

n _ _  n - - 1  R ( 0 ) = R  C ( c ) = 0  (6) 

which can easily be constructed by direct algebraic iteration. For example 

3 ~ C 4 R2(0) = c 2 + c, R~.(0) + 2c 3 + c 2 + c (7) 

Since the size of coefficients and degree (2 n 1) of each polynomial increase 
rapidly with n, this method is only feasible for low-order cycles. So in 

Table I. Values of c at Centers of Principal Cardioids Corresponding 
to cycles of Order n a 

17 O n 

3 - 1.7548776 6624669 2760049 5088963 5852870 

4 - 1.9407998 0652948 4752232 0909796 5520419 

5 -1.9854242 5305420 5310609 7505827 1867435 

6 -1.9963761 3771119 3750644 8798190 6060663 
7 - 1.9990956 8232701 8473210 6299992 2229446 

8 -1.9997740 4869372 7323471 7009961 3091576 

9 -1.9999435 2176567 4009146 1790814 9080053 

10 -1.9999858 8114039 2107911 5315548 1791579 

11 - 1.9999964 7033500 8689607 2273726 5654157 
12 1.9999991 1758726 0825033 3507285 8064714 

13 -1.9999997 7939705 8828114 4878867 8768003 

14 - 1.9999999 4484928 1454161 7619352 9701129 

15 - 1.9999999 8621232 1505285 6666396 6496980 
16 -1.9999999 9655308 0453621 1087401 5473483 

17 -1.9999999 9913827 0118607 7969200 4616478 

18 -1.9999999 9978456 7530000 3122841 4657128 
19 -1.9999999 9994614 1882523 3011102 5999467 
20 -1.9999999 9998653 5470632 3673642 9077819 

21 - 1.9999999 9999663 3867658 1938869 1650548 
22 -1.9999999 9999915 8466914 5552036 8333112 

For n > 7 up to 42 decimal places were used. 



582 Stephenson 

practice one computes the centres numerically to high precision by direct 
iteration. The first 20 principal centres for n = 3-22, given in Table I, form 
a smooth sequence, which I analyze by the ratio method, as follows. 

3. THE RATIO M E T H O D  

By the usual hypothesis (as in critical phenomena), I assume that to 
leading order the asymptotic form of the terms in a sequence at, is 

an ~ a~ + A/G~n ~ (8) 

where a~ ,  A, G, and e are the critical "value," "amplitude," "constant," and 
"exponent," respectively. Without prejudice to the values of a~ and A, the 
constant G and the exponent e can be extracted by plotting (following 
Domb, (~) Domb and Sykes, (2) and also Feigenbaum (6)) 

Gn = (a~ -- a,+ ~)/(an+ ~ - - a n + z ) ~  G(1 + e/n) (9) 

versus l/n, so G is the intercept and Ge the slope of the resulting "l /n plot." 
For  the centres of the principal cardioids we calculate the differences, 

ratios of differences, and (following Feigenbaum (6)) the ratios of differences 
of ratios: 

dn = c. + 2, r . = d . / d n + l ,  Sn=(rn - - rn+l ) / ( rn+l - - rn+2)  (10) 

It is clear numerically that cn ~ - 2 ,  dn ~ O, and r n --+ 4 exponentially fast. 
In the present case it is sometimes more convenient to number the terms 
by m = n - 2, so if we write cn ~ co~ + A/G~rn ~~ so 

r, = d,/d,, +~ ~ Go( 1 + Coin) ( 11 ) 

then c o = - 2 ,  Go - r~ = 4, e0 = 0, regardless of A. 
Consequently, the first genuine "l /n plot" comes from 

r , ~ r o ~ + B / G ' ~ m  ~ with s , ~ G ~ ( l + e l / n ) ,  m = n - 2  (12) 

in Fig. 1, where the intercept is G ~ 4 ,  and, from the slope, e~ .,~ -1 .  [In 
Fig. 1, sn is plotted against 1 / ( n -  I), 1/n, 1/(n + 1) in the upper, middle, 
and lower graphs, respectively.] It is also "obvious" numerically that 
r ~ = 4 ,  and in fact a "l /n plot" of [ ( r n - 4 ) / ( r , + l - 4 ) ]  is very similar to 
Fig. 1. 
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Fig. 1. A 1/n plot of s., defined in (10), against 1 / ( n - 1 ) ,  1/n, and 1/(n+ 1) in the upper, 
middle, and lower plots, respectively. The intercept is G1 ~ 4, and, from the slope, e~ - -1. 

4. E S T I M A T I O N  OF A M P L I T U D E S  

The determination of the amplitudes is a messy process (below), and 
the final results are in (23) and (24). Assuming now that Go = G~ = roo = 4, 
we estimate the amplitudes A and B by calculating 

A. =4" -2d~ ,  and B., defined in (15) below (13) 

as in Table II. The approach of A,  as a decreasing sequence to a limiting 
value close to A = 0.925275412602 is exponentially fast, as may be confir- 
med by a graph of A~ versus m / 4  m [in which the choice of abscissa is based 
on the asymptotic behavior of Cn below in (20)], and by the behavior 
of r. .  

The estimation of B could start by writing r.  in (12) as 

r n = r ~  + B . / G ' ~ m  ~, where Bn ~ B as n --* oo (14) 

and calculating the combination (defining B'n) 

m m - B n  Bn[1 1 / G l ( l + l / m )  ~] (15) G l ( r , z _ r . + l  ) ~1_  , = 

4 / assuming e l = - 1  and G~=4.  This yields the lower graph of 5Bn 
4 [ = B ' n / ( 1 -  1 / G I ) ,  with the awkward unavoidable factor 1 / ( 1 - 1 / G 1 ) = g  
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(a) 1/n plots of -~B', (Rower) and B, (upper) which tend to B. (b) Detail of a l/n plot 

of B~ ~ B -~ 0.46261. 
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here, and below], which tends to B, in the 1In plot of Fig. 2a. However, a 
more rapid approach to B is achieved by {removing the [ . . - ]  factor in 
(15)} 

Bn = B'~/[-1 - l/G1(1 + l/m) ~ ] --* B (16) 

as in the upper graph of Fig. 2a. A 1In plot of B, in Fig. 2b shows that 
some 1/n dependence remains in this decreasing sequence, and yields 
the estimate B-~0.46261. So from Figs. 2a and 2b, one obtains the 
approximate formula 

B~ ~ 0.46261 + 0.0069/n (17) 

The above analysis suggests it might have been better to write the 
original sequence in the form 

c, + 2 = a, ~ (A + Cn/GTm~I)/G~ (18) 

where C, , - ,  C as n ~  0% assuming G 0 = G I = 4 ,  e l =  - 1 ,  and to calculate 
the combination (defining C',) 

4 m ( A n - A n + l ) - C ' n / m ~ = C , [ 1 - 1 / G ~ ( l + l / m ) ~ ] / m  ~1 (19) 

directly as in Table II, in which the entries are "clearly" linear in m (as may 
also be seen from a graph), confirming that ~1 = -1 .  For  estimation of C, 
independent of A or B (but with el = - 1 ) ,  I provide 1In plots of 

4 t _ _  ~ 5Cn= ~ 4m(An - A n +  1)/m (upper), and C,, [-see (19); lower] (20) 

in Fig. 3a, from which C~-0.1427. A more rapid approach to the limit 
C=0.142680 is achieved by Cn, as in Fig. 3b. So from Figs. 3a and 3b one 
obtains the approximate formula 

C, ~ 0.142680 + 0.056/n (21) 

It is obvious (after a bit of algebra) that we should have 

B =  Go(1 - 1/G,) C/A (22) 

where the rhs is 0.462608, providing a better estimate of B. 
In summary, the numerical estimates of asymptotic forms for the 

positions of the principal centres are, with m = n - 2, 

d , = c n + 2 ~ A , , / 4  m, withA~=O.925275412602+mC,,/4 m (23) 
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where approximately Cn --- 0.142680 + 0.056/n, and 

d,/dn+~=rn~4+mBn/G~, withB,~-O.462608+O.OO69/n 

A better estimate for A is obtained in the next section. 

Stephenson 

(24) 

5. A N A L Y T I C A L  A P P R O A C H  

For  very large cycle order n, the cycles involving the centres have the 
following structure: 

! 
-70=0 XO~- ~ 

Z 1 = --2 Xl = 1 

Z2=2  X2=0  

Z,[2 X T 

1 
Z--1 ~ N ~  X--1 

2 4 

(25) 

z , = 0  x , = � 8 9  

A typical cycle is shown in the "return map" in Fig. 4. 
A partially analytical explanation of the sequence of principal centres 

can be extracted from Feigenbaum's form of the quadratic map. [I  am 

Fe]genbaum Map: n = 4 
a - 5.960270127, c I -194075 '9806529#85 

1 

09 

0.8- 
Xn§ 

0 . 7 -  

0 . 6 -  

0 , 5 -  

0.4 

0 , 5 -  

0 , 2 -  

0.1 

0 2  0.4 o.e X o e  

n 

Fig. 4. "Return map" of x~+l versus x~ for the (typical) cycle of order 4 associated with a 
principal cardioid. 
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especially grateful to Prof. G. R. Rowlands for suggesting how this could be 
done, as in (26)-(28) below.] While the cardioids approach the limit point 
of the Mandelbrot  set at - 2, the parameter  a approaches 4. Consequently, 
one has, from (3) and (4), for a cycle of order n, 

a ~ = 4 ( 1 - G ) ,  d , = c , , + 2 ~ 6 e , ,  (26) 

and iterating "forwards," we find Now starting the cycle (3) at Xo = 5  

:r _ !  - 0 - 2 ,  x l =  l - e n ,  x 2 = 4 e , , ( 1 - e , ~ )  2 . . . .  

x m ~ 4 G ( 1 - G )  m [ 4 ( 1 - G ) ]  ~ 2 ~ G 4 m - 1  , for m/>3 (27) 

since the linear approximation Xr +1 ~ aXr can be used when x is small. On 
the other hand, working "backwards" from xn = �89 one has from (3) for 

large n, x ~ ~ ( 1 - 1 / x ~ ) / 2 .  So equating the forward iterate x . _ l  to the 
backward iterate x ~, one has to a first approximation for large n 

x,,_~ ~ e,,4 '~-2 ~ (1 - 1/,,f2)/2 ~ X _ l  (28) 

whence d , , ~ 6 e , l ~ 6 x  1/4 n 2~_0.87868/4,,-2, which has the same form 
as in (23). The approximation can be improved, so after p steps of 
"backward" iteration to x one has - - p  

x , , _ , ~ e , , 4 "  P l ~ x  p (29) 

For a cycle of order n, X _ p - - x , ,  p. Note that the backward iterates are 
calculated from (3), so for large index r, 

x r  1 = [1 ( l -x~)~/23/2 (30) 

starting at x,, = X o =  ~. On setting e n = E , , / 4 "  2 and letting n ~ 0% one 
obtains a sequence of estimates for the limiting value of E: 

E { p }  -n 2 - - ,E  (31) - -  6 '  n q"  ~ o e p 

The corresponding sequence for A = 6 E  is shown in part  in Table III, 
in which A{28}=0.925275412602127368, where the last two digits are 
doubtful. [35 decimal places were used for X p, which leaves about 16 
for A{p}. ]  

The first members of the cycle, Xo, xl ,  and x2, are exact in (27), and 
a more accurate estimate of the terms for r ~> 3 can be obtained by using 
the first-order approximation x r ~ e n 4  r 1 only in the factor ( 1 - x r )  in the 
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Table I I I  

p A{p} p A{p} 

5 0 . 9 2 5 0 8 9 6  3442760 25 0 . 9 2 5 2 7 5 4  1260212 7202 
10 0 . 9 2 5 2 7 5 2  3116357 26 0 . 9 2 5 2 7 5 4  1260212 7328 
15 0 . 9 2 5 2 7 5 4  1242494 27 0 . 9 2 5 2 7 5 4  1260212 7360 
20 0 . 9 2 5 2 7 5 4  1260195 28 0 . 9 2 5 2 7 5 4  1260212 7368 

quadrat ic  map  x r + l =  axr(1 -xr ) ,  as in (3). This yields (the subscript n on 
e~ is omit ted below) 

x3 ~ 42e(1 - e )  3 (1 - 4 e )  

X 4 ~ 43e(1 -- e) 4 (1 -- 4e)( 1 -- 42e) 
(32) 

m - - 2  

Xm~4~- l e ( l - - e )  m I-I ( 1 - 4 r e )  
r ~ 1  

N o w  set e,  = E ~ / 4  n-1 and reverse the order of the product  by putt ing 
r n = n - p  and r = n - q - 2 ,  so 

n 3 

Xn-p=E41-p(1-E/4n-1)  n P 1~ ( 1 - E l  4q) (33) 
q = p  

Again let n ---, oe and match up the forward iterate xn p with the backward  
iterate x to obtain 

P 

x p ~ 4  ~ PE [I ( 1 - E l  4q) (34) 
q = p  

where for each value o f p  one gets an estimate E{p} for E. The correspond-  
ing sequence for A = 6E converges more  rapidly than the one from (31). 

6. RATIOS INVOLVING T E R M S  IN A D J A C E N T  CYCLES 

Feigenbaum (6) showed that  there are two universal numbers  6 and c~ 
associated with sequences of bifurcations, c~ determines the scaling of the 
separation of the terms in the cycles as their order doubles at each bifur- 
cation. There is no quanti ty completely equivalent to c~ in the principal 
cardioid problem. However,  there are ratios of term separations which are 
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of some interest. Recall that  the centers of the cardioids are located by the 
values of c for which the origin is a member  of the cycle in question. So 
cycles of order  n have terms z o = 0, z~ = c~,..., z ...... with z,  = z o. The r th  
term of a cycle of order  n with center c~ will be written zr or more  
simply zr(n). I will s tudy the ratios of  differences between corresponding 
terms (obtained by the same number  of  iterations from the starting value 
Zo) in adjacent cycles (whose orders differ by unity), beginning with the 
first two cycle members  

Pl2(n) = [ z 2 ( n ) - z z ( n  + 1)]/[zl(n ) - z i ( n  + 1)3 (35) 

as a sequence in the cycle order n = 3, 4,..., 0% as in the second column of 
Table IV. The limit as n ~  oo is P12 = - 3 .  The other columns contain 
sequences in n for ratios of differences of adjacent ( inn)  higher-order 
corresponding terms: 

pp, p+l(rt)= [zp+,(n)-Zp+~(n+ 1)] / [ zp(n) - zp(n+ 1)3 (36) 

(p = 2, 3,..., 6). The limits as n ~ oo of these sequences Pp, p+t  a r e  rational 
numbers  (in the bo t tom row of Table IV) of the form tp+l/tp where 

tp = ( - ) ( 2  2p i + 1 )/3, p = 2, 3, 4 .... (37) 

(except for the first column).  These numbers  would be of little interest, 
except that  they are related to the first derivatives of the iterated maps 
R,'~(0) at c = - 2 :  

' =_ OR~(O)/ec (38) tp = tp 

[No te  that  Zp(n)=RP-~(c ) -RP(O)=pth  term in a cycle of  order n 
starting at Zo = 0, and as n + 0% c,, + - 2 . ]  These derivatives appear  in a 
Taylor  expansion of R~(0) in (5), for a cycle of finite order n [replacing p 
in (38)]  with parameter  c, at a center, about  c =  - 2 :  

~&'.(o) 
R",(O) = R,'~(O) ,.= 2 + (cn + 2) Oc , . :  

I 1 2 . t n 2  + = 2 + d .  t~+~d.  ... 

~ 2 n n r  c =  1 ~ ~ c t  ) 
2 + 2 (c,, + 2) 2 ~C 2 2 ' 

(39) 

F rom the first two terms of this series (in d.), we get an estimate [-the 
s e r i e s = 0  at cn by (5)] 

/ 1 e n + 2 = d , ~  - 2 / t , , ~  12/4"= (3 /4 ) /4"  2~A/4~ ' -2  (40) 
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where (very roughly)  A ,-~ 3/4. Al though this expression has the same form 
as (23), it is not  correct,  for we cannot  justify dropping  the higher-order  
terms in the series (39). The  third term involves the second derivative: 

02 " 0 ,, 
R~( ) -- [ 2 - 1 6 n - ' + 6 ( n - 1 ) 4  " ~ - 2 ] / 2 7  (41) 

t2 = ~C2 c= --2 

where the formula  (proved below) checks for n = 3-7 with the numerical  
values obta ined  f rom the exact polynomials ,  which are constructed by 
algebraic iteration. N o w  keeping only the leading order  terms in t~ and t 2, 
and writing d,, = A / 4  n 2, we find that  the expansion (39) for R~(0) involves 
only A : 

n ~ a  2 Re(0) = 2 - 3S-A + 27~. + . . . .  0 (42) 

which yields (as a quadra t ic  in A) 

A ~ �88 - x / ~ )  = 0.9509619.--  (43) 

as an improved  est imate for the amplitude.  The second term on the rhs of 
(41) has the form n4", and is responsible for the exponent  e~ = - 1  in (12) 
and in Section 4. At this point  one m a y  ask whether  it is possible to extend 
the series to higher derivatives. It is: see below! 

7. EXACT SOLUTION OF THE PRINCIPAL 
C A R D I O I D  PROBLEM 

and 2 and obtain  We now derive the formulas  (37) and (41) for t n t,,, 
the entire series (39) in dn for asymptot ica l ly  large n. Writ ing R" for R'~I(0), 
the basic recurrence relation becomes 

R n + 1 = (R n)2  + C (44) 

SO at c = --2, R n = 2 for n > 1. Denot ing  differentiation with respect to c by 
D - (?/~?c, one has 

D R  "+1 = 2 R n . D R "  + 1 (45) 

On setting t~ = D R "  at c = - 2 ,  (45) yields a recurrence relation 

tn+11 - 4 t ~ =  1 (46) 

start ing at t~ = 2c + 1 I,= 2 = - 3 ,  for the first derivative. The  solution is, as 
in (37) and (38), 

2 = ( - - )  3,2 = + 1 ) ,  n = 2 ,  3 , 4  .... ( 4 7 )  
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Next differentiate (45) to get 

D 2 R  "+ l = 2(DRY) 2 + 2 R  n. D 2 R  " (48) 

which becomes a recurrence relation for the second derivative t~ = D 2 R  n at 
c = - 2 :  

2 = 2 (49) t 2 - 4 t 2 = 2 1 1 ( � 8 9  2, with t 2 
n + l  

The solution is, as in (41) 

tn2 ~- ~[-1 1 42n _~ 53. ( n _  1) 4n_  2] ' n = 2, 3, 4... (50) 

The rhs of the difference equation (49) contains a term 4" which is also 
a solution of the homogeneous difference equation (the complementary 
function), which explains why the solution contains a term like n4 n, and 
hence why el = - 1  in Section 4. 

It is important to notice that only the leading order terms contribute 
to the expansion of R~(0) in powers of A =4n-Zd~ in (39), as in (42). For 
a derivative of order r the leading term involves 4 hr. Moreover, for r > 1 
these terms arise from particular solutions to the difference equations. 
Therefore to obtain the expansion in powers of A it is sufficient to retain 
only the largest terms on the rhs of the difference equations. For  a par- 
ticular order of derivative, the rhs are constructed from lower-order 
derivatives. Consequently, the third and higher derivatives at c = - 2  only 
have to be calculated to leading order. This simplifies matters considerably! 

Let us list the relations which express the r th derivatives of R~ +1 in 
terms of derivatives of R~ of equal or lower orders for n > r [ D  = O/~c, and 
the sub and superscripts c and n are dropped from R~ on the rhs]" 

3 n + l  D R C = 2 R .  D 3 R  + 6 D R .  D Z R  

D4R~ + 1 = 2 R .  D 4 R  + 8 D R .  D 3 R  + 6(D2R) 2 

DSR~+1 = 2 R  . D S R  + I O D R  . D 4 R  + 2ODZR -D3R 

6 n + l  D R ,  = 2 R .  D 6 R  + 1 2 D R .  D S R  + 3 0 D 2 R  . D 4 R  + 20(D3R) 2 

7 n + l  D R c = 2 R  �9 D 7 R  + 1 4 D R .  D 6 R  + 4 2 D 2 R  �9 D S R  + 70D3R �9 D 4 R  

D 8 n+ 
R c 

(51) 

1 = 2 R . D S R  + 1 6 D R . D V R  + 5 6 D 2 R . D 6 R  + 1 1 2 D 3 R . D S R  + 7 0 ( D a R )  2 

[See also (44), (45), and (48).] Evaluating all the relations in (51) at 
c =  - 2 ,  so R = 2  ( n > r > 2  here), and setting 

r D r R  n t n= at c =  --2, (n=cyc le  order) (52) 
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one obtains  a sequence of linear f irst-order difference equat ions of the form 

t',i + 1 - 4t~, = RHS,  where RHS ~ (rat ional  n u m b e r ) -  4 nr (53) 

r > 2 only the par t icular  solution is required, for large In each case for n > 
cycle order  n: 

t~~ 

t2~ 
t3~ 

t4~ 

t2~ 

t ~  

- 4 ~ / 2  . 3 

- t-42"/2 2.  3 2.  2 -  3 

- 4 3 n / 2 3 - 3 3 . 3 - 4 . 5  

+44~/24.34.  4 . 5 . 6 . 7  

-45~/25-35 .  5- 6 . 7 - 8 - 9  

+46n/26" 36. 6 . 7 -  8 - 9 �9 10.11 

-47~/27-37 . 7 - 8 . 9 , 1 0 . 1 1  -12 .13  

+48"/28 .38 . 8 . 9 . 1 0 - 1 1  �9 1 2 - 1 3 . 1 4 - 1 5  

(54} 

There  is obviously a simple rule for the denomina to r s  (checked up to t~~ 

t ~ ( - 4 n ) r . ( r - 1 ) ! / U . 3 r . ( 2 r - 1 ) ! ,  r = 1, 2, 3, 4,... (55) 

So the Taylor  expansion for R~'~(0) abou t  c = - 2 ,  as in (39), becomes,  to 
leading order  in each term, 

Re(0) = 2 + r! ~?c r 
r ~ l  --2 

r r  

d~ t n 
- - 2 +  rt 

r = l  

= 2 +  ~ ( - 4 " d ' / 6 ) ~ ( r - 1 ) !  
r=1 r! (2 r - -  1)! 

(56) = 2  cos[(8A/3)  1/2] . . .  ! 

The relevant zero is at (8A/3)  1/2= ~z/2, so 

A = 3~2/32 = 0.925275412602127370515 -. .  (57) 

By keeping the next-order  terms in the difference equat ions and their 
solutions, once could evaluate  the constants  in the asympto t ic  expressions 
(23) and (24) for the centers of  the principal cardioids. 

822/58/3-4-13 
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8. OTHER ITERATIVE M A P S  

Similar sequences appear for other iterative maps of the form xn + ~ = 
F(x,). Rowlands (7~ (quoted with slight changes in notation) has shown 
that, "for the map: 

1 fax, 0 <<. x <~ 
F(x" a) (58) 

' l ~ x ~ l  ~a(1 - x ) ,  

[for which the limiting value of a is a o o = 2 ]  setting a [ = a , =  
aoo(1 - e n ) ]  = 2 ( 1 -  e,) and e, = E,/2", one gets an exact equation 

E.(1--E./2")" 1= 1 (59) 

which ... gives E,--+ E =  1. However, this map is not of the Feigenbaum 
class. In all cases 

e,~E,/[F'(O)]", where F'(O)=F'(x=O;a=aoo),'=O/6x (60) 

which is not too surprising since (x) spends a lot of iterates in the linear 
regime of the map, where xr+ 1 -~ F ' (0 ) .  xr." 

The terms in the required sequence are exactly 

x o = l / 2 ,  X l = l - e . ,  . . . ,  Xr=en[2(1-e.)]  r-l, 2<~r~n (61) 

Consequently, the cycle closes at order n if x,, = x0 = 1, so 

e.[2(1 - e . ) ] "  1 _ 1/2 (62) 

which determines en, and is equivalent to (59). For increasing n it is easy 
to obtain a sequence of values of e,  (or E,)  by solving (62) (or (59)) 
numerically. Then E,  --+ 1 and a ,  -+ 2. 

9. C O N C L U D I N G  R E M A R K S  

The principal cardioid problem for the Mandelbrot  set discussed in 
this paper shows the power of numerical methods, such as the ratio 
method, in determining the asymptotic behavior of the terms in a sequence. 
A scaling reduction by a factor of 4 has been established for the distances 
of the centers of the relevant cycles from the limit point at - 2. One would 
expect that a similar scaling factor will apply to the longitudinal and 
transverse dimensions of the cardioids in the complex plane. 
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We have examined the sequence of centers of cardioids which are 
closest to the limit point. There will be other, similar sequences of 
(centers of) cardioids corresponding to cycles of increasing order along the 
real axis. For example, there will be a sequence of cardioids which are 
"second closest" to the limit point, then another sequence which is "third 
closest," and so on. Each of these sequences may be indexed by its "level" 
of proximity to the limit point. These higher-level sequences will begin only 
when the initial cycle order is sufficiently high. For  example, the cycle of 
order five yields three cardioids on the real axis, one of which belongs to 
the "principal" sequence. The other two cardioids may well signal the begin- 
ning of the next two "levels" of sequences. It is tempting to suggest that the 
scaling factor from the limit point is still 4, and that the "amplitudes" of 
these sequences will be given exactly by the higher-order zeros of the cosine 
function in (56)! If this turns out to be the case, then we will be able to 
classify all possible sequences of cardioids by their "levels." Calculations for 
cycles at level 2 confirm the above conjecture for the sequence of cardioids 
"second closest" to the limit point. Further study of such sequences is in 
progress. 

NOTE ADDED IN PROOF 

The difference equations in (51) and their solutions in (54) can be 
verified by induction. It is easy to see that the "levels" l correspond to all 
possible "inverse orbits" from - 2 ,  arranged in such an order that 
z 0 -  ( - ) Z ~ D ( 2 I - 1 ) / 4  n, where D -  ~R~/~z. At points on the boundary of 
the Mandelbrot set D has an absolute value of unity 13) so D = exp(i0), 
say. Then one can derive a parametric formula for all the cardioids: 

l io,. i iO, s/16~n-1) , w i t h S = ~  cn-c , , ( cen t re ) -~se  t l - s e  ~ 3 [ r t ( 2 / - 1 ) ]  2 . 
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